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The X-ray back diffraction of (1240) in a monolithic two-plate silicon cavity

occurs at photon energy 14.4388 keV, at which 24 beams are simultaneously

excited. Based on the dynamical theory of X-ray diffraction, a theoretical

approach has been developed for solving the fundamental equation of

dynamical theory to investigate this back diffraction and the interference

patterns generated by the Fabry–Perot-type resonance that produces intensity

undulation in both transmitted and back-reflected beams. The section of

dispersion surface and its associated linear absorption coefficients, wavefield

intensities and excitation of mode are calculated. The calculated intensity

distribution of the transmitted beam is in a good agreement with the observed

one. Details about the interaction between the multiply diffracted X-rays and

cavity resonant photons are also reported. Procedures of computer program-

ming are also provided.

1. Introduction

An optical Fabry–Perot cavity, one of the key components of

making a conventional laser, is mainly composed of two

mirrors separated by a distance and nearly parallel to one

another. A variety of cavities has also been proposed to guide

X-rays in a close loop to generate resonance interference

(Bond et al. 1967; Deslattes et al. 1968). The simplest X-ray

cavity, similar to the optical Fabry–Perot cavity, is made up of

a pair of crystal plates acting as reflecting mirrors. Different

from the optical Fabry–Perot cavity, an X-ray Fabry–Perot

cavity employs successive Bragg back diffraction from atomic

planes whose Bragg angle is extremely close to 90� to confine

the radiation between two crystal plates. The coherent

forward- and backward-reflected X-rays from the two plates

interfere with each other to generate resonance fringes. Since

the idea of the X-ray Fabry–Perot cavity was proposed, there

have been many theoretical studies on X-ray back diffraction

(Caticha & Caticha-Ellis, 1982; Colella & Luccio, 1984;

Kushnir & Suvorov, 1990; Shvyd’ko et al., 1998) and X-ray

Fabry–Perot interferometers (Steyerl & Steinhauser, 1979;

Caticha & Caticha-Ellis, 1990; Kohn et al., 2000) reported in

the literature. With the advent of synchrotron radiation, a

diversity of experiments has been attempted to observe the

X-ray cavity resonance fringes (Liss et al., 2000; Shvyd’ko et al.,

2003). Until recent experiments (Chang et al., 2005, 2006), the

resonance fringes in two-dimensional intensity distributions

through angular scans were clearly observed in X-ray cavities

made up of a monolithic two-plate or multiplate silicon crystal

employing back diffraction of (1240) at photon energy

14.4388 keVat which 24 beams are simultaneously excited due

to the crystal symmetry. The experimental conditions for

detecting well resolved resonance fringes in such diffraction

experiments were also discussed (Chang et al., 2005, 2006).

Until now, the dynamical simulation of resonance fringes

for 24-beam diffraction occurring in an X-ray Fabry–Perot

cavity has not yet been reported in detail. Although Sutter et

al. (2001) had observed the 24-beam diffraction involving the

back diffraction of (1240) from a 3.8 mm thick silicon crystal

plate, only a few discrete intensity scans of back diffraction

(1240) over two orthogonal directions were given and the

corresponding dynamically simulated curves and an image

showing 10-beam diffraction spots were reported. The fully

two dimensional intensity map of back diffraction (1240), the

section of dispersion surface, linear absorption coefficients

and excitation of mode were not mentioned.

Based on the above facts, we continue to go further to

develop a theoretical approach to solve the fundamental

equation of wavefield and give a better insight into the reso-

nance fringes involving 24-beam diffraction in the X-ray

Fabry–Perot cavity experiments. The section of dispersion

surface, linear absorption coefficients and excitation of mode

are also reported.

2. Theoretical considerations

The dynamical theory of X-ray diffraction, describing the

interaction of X-rays with crystalline material, originated with

Darwin (1914) and Ewald (1916), and was reformulated by

von Laue (1931), taking into account multiple diffraction. A

very comprehensive review can be found in the recent book by



Authier (2001). We follow von Laue’s approach to give a brief

review on how to obtain the fundamental equation of wave-

fields. The dielectric constant in crystalline materials is

considered as a periodic function of space and Maxwell’s

equations are used to deal with the interaction of X-rays with

the crystal. The solutions to Maxwell’s equations, the elec-

tromagnetic fields, DðrÞ, EðrÞ, BðrÞ and HðrÞ, in the crystal

satisfying Bragg’s law, are Bloch waves, which are expressed as

a superposition of an infinite number of plane waves. Inserting

the Bloch waves into Maxwell’s equations and equating each

Fourier component between two sides of equality lead to the

two relations Khm
� Ehm

¼ ��0Hhm
and Khm

�Hhm
¼ ��Dhm

,

where hm is the reciprocal-lattice vector involved in the

diffraction, � is the frequency and �0 is the permeability

of the free space. The dielectric constant is defined as

� ¼ "ðrÞ="0 ¼ 1þ �, where "ðrÞ is the permittivity of the

dielectric, "0 is the permittivity of free space and � is the

dielectric susceptibility. All can be expressed as a Fourier

series due to the periodic nature of the crystal. Employing the

relation DðrÞ ¼ "ðrÞEðrÞ, inserting the Fourier series of DðrÞ,

EðrÞ and "ðrÞ into this relation and equating each Fourier

component between two sides of this relation result in the

equation

Dhm
¼ "0 Ehm

þ
PN�1

n¼0

�hm�hn
Ehn

� �
ð1Þ

for N diffracted waves. Finally, taking the cross product of Khm

with two sides of the relation Khm
� Ehm

¼ ��0Hhm
, the

fundamental equation of wavefield is derived as follows:

ðKhm
� Khm

� k2
ÞEhm
¼ ðKhm

� Ehm
ÞKhm
þ k2

PN�1

n¼0

�hm�hn
Ehn
;

ð2Þ

where m = 0, 1, . . . , N � 1. k is the inverse of the wavelength

of the incident beam. Khm
are the wavevectors participating in

diffraction within the crystal, �hm�hn
is the dielectric suscep-

tibility of the crystal for the hm � hn reflection. These N waves

coherently couple with one another via the corresponding

susceptibilities.

To tackle such an N-beam diffraction situation in a single

crystal, Stetsko & Chang (1997) introduced a Cartesian

coordinate frame to decompose the electric fields and wave-

vectors of the fundamental equation (2) into their x, y and z

components. Through matrix manipulation, the fundamental

equation (2) is expressed in an eigenvalue equation of a matrix

form (3). The detailed derivation was given by Stetsko &

Chang (1997). The final eigenvalue equations are as follows.

ðQ� zI4ÞE4 ¼ 0 ð3Þ

Q ¼

C 0 AG�1A� I AG�1B

0 C BG�1A BG�1B� I

B2 �G �AB C 0

�AB A2 �G 0 C

0
BBB@

1
CCCA

ð4Þ

E4 ¼

Ex

Ey

Ev

Ew

0
BBB@

1
CCCA: ð5Þ

Ex ¼ ðE
x
0;Ex

1; . . . ;Ex
N�1Þ

T , Ey ¼ ðE
y
0;E

y
1; . . . ;E

y
N�1Þ

T , Ez ¼

ðEz
0;Ez

1; . . . ;Ez
N�1Þ

T , Ev ¼ ðC � zIÞEx � AEz, Ew ¼

ðC � zIÞEy � BEz, Ez ¼ �G�1ðAEv þ BEwÞ, where the

superscript T means the transposition of the matrix. z and E4

are the eigenvalue and eigenvector of matrix Q, respectively.

The introduction of two matrices Ev and Ew serves to derive

the above eigenvalue equation (3). N stands for the number of

beams participating in the diffraction. I4 is a 4N � 4N unit

matrix. I is an N � N unit matrix. 0 is an N � N zero matrix. A,

B and C are all N � N diagonal matrices. The diagonal

elements of A, B and C � zI are the X, Y and Z components of

the wavevectors inside the crystal, respectively. The unknown

z’s are the eigenvalues of the matrix Q. G ¼ k2ðI þ FÞ, where

F is an N � N matrix whose elements are given by

fmn ¼ �hm�hn
. �hm�hn

is the electric susceptibility of the crystal

for the ðhm � hnÞ reflection. G�1 is the inverse matrix of G. It

should be noted that all the eigenvalues and eigenvectors of

matrix Q are not real but complex.

The Cartesian coordinate frame (Fig. 1) adopted by Stetsko

& Chang (1997) was chosen such that the z axis is perpen-

dicular to the crystal entrance surface, pointing outward from

the crystal, X and Y axes lie in the crystal entrance surface.

In this Cartesian coordinate frame, assuming that

(Xm, Ym, Zm) are the coordinates of the reciprocal-lattice

points involved in the diffraction lying on the surface of the

Ewald sphere, and (Xc, Yc, z) is the origin of the wavevectors

of the waves propagating inside the crystal, where Xc and Yc

describe the position of the crystal-surface normal n on the

surface (see Fig. 1). According to vector algebra, these

diffracted waves can be expressed as

Khm
¼ ðXm � Xc;Ym � Yc;Zm � zÞ ¼ ðxm; ym;Zm � zÞ: ð6Þ

z is determined by the eigenvalue equation (3). There are 4N

solutions of z. These solutions are the z components of the

4N origins of wavevectors, the so-called tie points of the
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Figure 1
Cartesian coordinate frame.



dispersion surface. Only those waves whose wavevectors are

drawn from the tie points on the dispersion surface to the

reciprocal-lattice points can survive inside the crystal.

The electric field associated with the wavevector Khm
is

Ehm
¼ ðEx

m;Ey
m;Ez

mÞ.

In general, Xc and Yc can be expressed in a spherical

coordinate system as follows.

Xc ¼
1

�
cosð�Þ cosð�Þ; Yc ¼

1

�
cosð�Þ sinð�Þ; ð7aÞ

where � ¼ �B þ��, � ¼ �0 þ��.

The definition of � and � coordinates refers to Fig. 1. For

convenience, �0 is usually chosen to be 0. That is, the incident

beam lies in the xz plane. The quantity �� serves as the

variable of the azimuthal scan around the z axis. The quantity

�� stands for the angular deviation from the exact Bragg

angle �B, serving as the variable for the rocking curve.

For the normal incidence geometry (see Fig. 2),

½XC;YC;ZC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ �0Þ=�

2 � ðX2
C þ Y2

CÞ
p

� is the center of the

Ewald sphere. ð0; 0; 0Þ and ðXG;YG;ZGÞ are the coordinates

of the reciprocal-lattice point O for the incident reflection and

point G for the back reflection. The corresponding diffracted

wavevectors are KO and KG, respectively. For normal-inci-

dence geometry, when the values of Xc and Yc are close to

zero, consideration of the back diffraction in terms of the

angular deviations, ��X and ��Y , of the incident beam from

the exact normal incidence is more convenient than the

traditional spherical � and �. ��X and ��Y are also the angles

of the crystal’s rotation around the y and x axes, respectively.

In this case, the coordinates Xc and Yc of the crystal-surface

normal n can be expressed as

Xc ¼ ��X=�;Yc ¼ ��Y=�: ð7bÞ

3. Boundary conditions for a single-crystal plate

The entries of eigenvectors E4 are the x, y and z components

of the electric fields inside the crystal. But the values of these

entries are only the ratio between the wavefield amplitudes.

Fortunately, according to boundary conditions, the electric

fields outside the crystal could be determined. At the

boundary between two different materials, the tangential

components of the electric field EðrÞ and the magnetic field

HðrÞ are continuous and the normal components of the electric

displacement DðrÞ and the magnetic induction BðrÞ are also

continuous. For a crystal plate, there are two boundaries,

called the entrance and exit surface, respectively. Assuming

that N waves are excited, each diffracted wave must obey the

boundary conditions. This statement was formulated by

Stetsko & Chang (1997) as follows.

Ex :
P4N

j¼1

cjE
x
mð jÞ jl ¼ Ex

ðeÞ�
l1
m0 þ Ex

ml’ml ð8Þ

Ey :
P4N

j¼1

cjE
y
mð jÞ jl ¼ E

y
ðeÞ�

l1
m0 þ E

y
ml’ml ð9Þ

Dz :
P4N

j¼1

cj

h
Ez

mð jÞ þ
PN�1

n¼0

�hm�hn
Ez

nð jÞ
i
 jl ¼ Ez

ðeÞ�
l1
m0 þ Ez

ml’ml

ð10Þ

Hx :
P4N

j¼1

cj½zmjE
y
mð jÞ � ymEz

mð jÞ� jl

¼ ðKz
mE

y
ðeÞ � ymEz

ðeÞÞ�
l1
m0 þ ½ð�1ÞlKz

mE
y
ml � ymEz

ml�’ml

ð11Þ

Hy :
P4N

j¼1

cj½xmEz
mð jÞ � zmjE

x
mð jÞ� jl

¼ ðxmEz
ðeÞ � Kz

mEx
ðeÞÞ�

l1
m0 þ ½xmEz

ml � ð�1ÞlKz
mEx

ml�’ml

ð12Þ

Bz :
P4N

j¼1

cj½ymEx
mð jÞ � xmEy

mð jÞ� jl

¼ ðymEx
ðeÞ � xmE

y
ðeÞÞ�

l1
m0 þ ½ymEx

ml � xmE
y
ml�’ml; ð13Þ

which involve the relations Dhm
¼ "0ðEhm

þ
PN�1

n¼0 �hm�hn
Ehn
Þ

and B ¼ �H;Hhm
¼ ðKhm

� Ehm
Þ=k for non-magnetic ma-

terials, i.e. � = 1. Because the number of eigenvectors of the

matrix Q is 4N, the summation must be taken over j = 1, . . . ,

4N. The Kronecker delta is defined as �l1
m0 ¼ 1 if m = 0 and l = 1;

otherwise, �l1
m0 ¼ 0. l = 1 means the entrance surface and l = 2

stands for the exit surface. Ex
ðeÞ, E

y
ðeÞ and Ez

ðzÞ are the x, y and z

components of the electric field of the incident beam. Ex
ml, E

y
ml

and Ez
ml are the x, y and z components of the electric fields of

the diffracted waves in front of (l = 1) and behind (l = 2) the

plane-parallel crystal. The subscript m takes the values

m ¼ 0; . . . ;N � 1. zmj, defined as zmj ¼ Zm � zj, are the z

components of the wavevectors of the diffracted waves inside

the crystal. Kz
m and �Kz

m are the z components of the wave-

vectors of the outgoing diffracted waves at the exit and

entrance side of the crystal plate, respectively. Kz
m is defined as

Kz
m ¼ �½k

2 � ðx2
m þ y2

mÞ�
1=2.  j1 ¼ ’m1 ¼ 1,  j2 ¼ expð2	izmjtÞ
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Figure 2
Schematic of the wavevectors for back diffraction in a two-beam case.



and ’m2 ¼ expð2	iKz
mtÞ, where t is the thickness of the crystal

plate.

Merging the above equations (8)–(13) by a linear combi-

nation and eliminating the electric fields Ex
ml, E

y
ml and Ez

ml

outside the crystal, the new equations take the following

forms, where only the unknown cj are left. The detailed

deviation can be found in the papers by Stetsko & Chang

(1997) and Chang (2004).

P4N

j¼1

cj

n
½zmj þ ð�1Þl�1

Kz
m�E

x
mð jÞ þ xm

PN�1

n¼0

�hm�hn
Ez

nð jÞ
o
 jl

¼ 2Kz
mEx
ðeÞ�

l1
m0 ð14Þ

P4N

j¼1

cj

n
½zmj þ ð�1Þl�1Kz

m�E
y
mð jÞ þ ym

PN�1

n¼0

�hm�hn
Ez

nð jÞ
o
 jl

¼ 2Kz
mE

y
ðeÞ�

l1
m0: ð15Þ

After expanding the above equations (14)–(15) over j = 1, . . . ,

4N, m = 0, . . . , N � 1, and l = 1, 2, these equations can be

combined and presented in a linear system, like A0X ¼ B0.

Here, A0 is a 4N � 4N square matrix. X and B0 are 4N � 1

column matrices. The entries of column matrix X are the

unknown cj. The entries of column matrix B0 are related to the

polarization of the electric field and wavevector of the incident

beam. The unknown cj can be obtained by calling standard

subroutines, in particular, the subroutines of the IMSL library

(Compaq Visual Fortran 6.6b, 2002) of Visual Fortran. Once

the values of the unknown cj are determined, the next step is

to substitute the constants cj back into the original boundary

conditions, (8)–(10). Eventually, the electric fields Ex
ml, E

y
ml and

Ez
ml of the diffracted waves outside the crystal can be obtained.

4. Diffraction in an X-ray Fabry–Perot cavity

In an optical Fabry–Perot cavity, the total reflection and

transmission amplitudes of the cavity can be expressed in a

closed form by summing the multiply reflected amplitudes

from two mirrors. Similarly, the total amplitudes can be

obtained by the same token for an X-ray Fabry–Perot cavity

by considering the multiply diffracted waves between the two

crystal plates. In fact, the reflectivity and transmission had

been derived from the dynamical theory by Caticha et al.

(1996), Kikuta et al. (1998), Kohn et al. (2000), Shvyd’ko

(2004) and many others.

According to Kohn et al. (2000), the dynamical theory of

two-beam back diffraction at normal-incidence geometry

gives the expressions for the transmission and reflection

amplitudes of X-rays from a single plate. The results are then

generalized for back diffraction from a two-layer system by

further deducing the recursion relations for transmission and

reflection amplitudes for a multilayer crystalline system. Each

layer is viewed as a crystal plate. The recursion relations are

tðkÞm ¼
tktðk�1Þ

m

1� rk�rrðk�1Þ
m

; rðkÞm ¼ rðk�1Þ
m þ

tðk�1Þ
m

�ttðk�1Þ
m rk

1� rk�rrðk�1Þ
m

; ð16Þ

where rðkÞm and tðkÞm are the reflection and transmission ampli-

tudes of a k-layer system; rðk�1Þ
m and tðk�1Þ

m are the reflection and

transmission amplitudes of the k � 1 layer system. rk and tk

are the reflection and transmission amplitudes of the indivi-

dual kth layer. If a gap exists between two successive layers

filled with a non-diffracting medium, its susceptibility is equal

to zero.

Now consider a system consisting of only three layers, in

which the first and third layers are crystal plates parallel to

each other; the middle layer is filled with a non-diffracting

medium. This system can be used to represent a two-plate

X-ray Fabry–Perot resonator. Assume that the thicknesses of

the first and second plates are d1 and d2, respectively, and the

middle layer is actually a gap of size dg. The transmission and

reflection amplitudes for each layer are described as follows

(Kohn et al., 2000). At the first layer: t1 ¼ tðd1Þ, �tt1 ¼ �ttðd1Þ,

r1 ¼ rðd1Þ, �rr1 ¼ �rrðd1Þ; at the middle layer: r2 = �rr2 = 0,

t2 ¼ exp½ðikdg=2
0Þ�g�, �tt2 ¼ exp½ðikdg=2
0Þð�g � �Þ�; and at

the third layer: r3 ¼ rðd2Þ expðihuÞ, �rr3 ¼ �rrðd2Þ expð�ihuÞ,

t3 ¼ tðd2Þ, �tt3 ¼ �ttðd2Þ. h is the modulus of the reciprocal-lattice

vector of (1240) and u = dg.

Inserting these expressions into the recursion relations (16),

the reflection and transmission amplitudes of an X-ray Fabry–

Perot cavity are derived as

rm ¼ rðd1Þ þ
tðd1Þ�ttðd1Þrðd2Þ expði�Þ

1� �rrðd1Þrðd2Þ expði�Þ
ð17Þ

tm ¼
tðd1Þtðd2Þ expði�gÞ

1� �rrðd1Þrðd2Þ expði�Þ
; ð18Þ

where � ¼ hdg þ 2�g � ðkdg=2
0Þ�, �g ¼ ðkdg=2
0Þ�g and

k ¼ 1=�. � is the angular deviation from the Bragg condition,


0 is the direction cosine of the incident beam with respect to

the inward surface normal. dg is the width of the gap between

the two crystal plates, d1 and d2 are the thicknesses of the first

and second crystal plates, respectively. �g is the electric

susceptibility of the gap material. r(d1) and t(d1) are the

reflection and transmission amplitudes of the first plate in the

direction of the incident beam and t(d2) is for the second plate.

�rrðd1Þ and �ttðd1Þ are the reflection and transmission amplitudes

of the first plate in the direction of the back diffraction. These

reflection and transmission amplitudes �rrðd1Þ, �ttðd1Þ, r(d1) and

t(d1) are given by the numerical solutions of the dynamical

theory. Similar derivations are also reported by Caticha et al.

(1996) and Shvyd’ko (2004). The total reflection and trans-

mission amplitudes expressed as a geometrical series implies

that the coherent length of the incident beam was assumed to

be infinite so that an infinite number of forward transmissions

and back reflections occur inside the cavity.

5. Conditions for dynamical calculations

The lattice parameter of 5.4309 Å of silicon is used throughout

the calculations The polarization of the electric field of the

incident beam is chosen along the [100] direction in the

Cartesian coordinate frame. The values of polarization factors

are put into the right-hand side of equations (14) and (15). The

thickness of each silicon crystal plate is 70 mm (= d1 = d2) with

a 100 mm (= dg) gap between the two plates (see Fig. 3). The
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energy of the incident beam is chosen as 14.4388 keV. The

atomic scattering factors of Si are used according to Interna-

tional Tables for Crystallography (2004). The anomalous

corrections of atomic scattering factors are obtained from the

NIST website (http://physics.nist.gov/PhysRefData/FFast/Text/

cover.html). The distribution of the 24 reciprocal-lattice points

(r.l.p.) over the surface of the Ewald sphere is shown in Fig. 4.

If the Ewald sphere is viewed along the Y axis, 24 r.l.p.’s lie in

three different planes. The first plane, h = 6, consists of (682),

(68�22), (646), (64�66), (606), (60�66), (6�442) and (6�44�22). The second,

k = 2, is composed of (426), (42�66), (826), (82�66), (1222), (122 �22),

(022) and (02�22). The third, l = 0, consists of (000), (1240),

(880), (1200), (8�440), (480), (4�440) and (040). All of them can be

classified into three kinds of diffraction geometry. The (8�440)

and (480) reflected waves, called Bragg-surface waves, whose

Bragg angles are 45�, propagate along the crystal surface. The

other 22 beams can be divided into two categories: Bragg

reflection type and Laue transmission type. If all of the 24

r.l.p.’s on the surface of the Ewald sphere are first projected

onto the xy plane, then 22 lines connecting these projected

points to the origin are drawn, and (1240) and (000) are

projected to (0,0). Only nine radial lines are visible due to

overlapping of the lines (See Fig. 5).

6. Results

6.1. Intensity distributions

Fig. 6(a) represents the calculated intensity map of the

reflected (1240) beam as a function of ð��X ;�EÞ in

the two-beam diffraction, i.e. (000)(1240) with �E ¼

E� 14:4388 keV for a two-plate crystal. It should be noted

that the photon energy in vacuum for the exact back diffrac-

tion of (1240) is E0 = 14438.8 eV, calculated from

2d1240 ¼ � ¼ hc=E0 (in vacuum). The radius of the Ewald

sphere seen by the crystal is n=�. The effective energy corre-

sponding to this Ewald sphere is nE0, where n is the index of

refraction. Hence the energy difference �E of X-rays in the

silicon crystal and in vacuum is ð1� nÞE0. Here, we refer to

�E as the energy difference in the crystal, which is also

adopted in the experiment. When the energy deviation �E

was chosen as 12 meV, indicated by the gray line, there are five

fringes within an angular range of �0:1� (Fig. 6b). This energy

was used to calculate the angular intensity distributions of the

reflected (1240) and transmitted (000) diffracted beams as a

function of ð��X ;��Y Þ in the 24-beam case for a two-plate

cavity (see Figs. 7a and 7b). If �E is varied, the number of

fringes or the interference pattern will also change. This fact

can be used for energy calibration.
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Figure 3
Schematic of an X-ray Fabry–Perot cavity with d1 = d2 = 70 mm and dg =
100 mm.

Figure 4
The distribution of the reciprocal-lattice points on the surface of the
Ewald sphere for the 24-beam case. The wavevectors of the (000), (12 40),
(8�440) and (480) are shown. Otherwise they are depicted as polyhedra.

Figure 5
The distribution of the 24 r.l.p.’s projected onto the xy plane shows nine
radial lines.



Fig. 7 shows the calculated intensity distributions of the

reflected beam (1240) (Fig. 7a) and the transmitted beam

(000) (Fig. 7b) as a function of ð��X ;��YÞ in the 24-beam case

for a two-plate crystal at �E = 12 meV off the exact resonance

energy. Five concentric rings exist within angular ranges �0:1�

due to the interference of the multiply forward and backward

reflected coherent X-rays from the two plates. Nine radial

lines (L1–L9) of diffraction are generated by the multiple-

beam interactions. They correspond to nine coplanar diffrac-

tions, belonging to nine zone axes, respectively. The involved

multiple beams for each line are respectively as follows. L1:

(1200), (040), (880), (4�440), (480), (8�440); L2: (122 �22) (022); L3:

(60�66), (646); L4: (82�66), (426); L5: (826), (42�66); L6: (606), (64�66);

L7: (1222), (02�22); L8: (68�22), (6�442); L9: (682), (6�44�22). Only L1 is

an eight-beam diffraction, the others are four-beam diffrac-

tions. The directions of the nine radial lines of diffraction

shown in Fig. 7(a) are perpendicular to those of the radial lines

connecting the reciprocal-lattice points shown in Fig. 5. This is

because the wavevector is perpendicular to the electric field

for the transverse X-ray waves. The calculated results agree

with the experimental data (see Fig. 7c).
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Figure 7
Calculated interference pattern of (a) the reflected (12 4 0) and (b) the
transmitted (000) beams in the 24-beam case for a two-plate crystal at
�E = 12 meV. (c) Experimentally measured interference pattern of the
transmitted (000) beam for a two-plate crystal at �E = 12 meV (Chang et
al., 2005, 2006). Five concentric rings are within the angular range �0:1�.

Figure 6
(a) The calculated intensity distributions of the reflected (12 40) wave as a
function of ð��X ;�EÞ in the two-beam case, i.e. (12 4 0) and (000), for a
two-plate crystal at ��Y ¼ 0. (b) The section of (a) at �E ¼ 12 meV,
indicated by the horizontal gray line, shows five fringes within the angular
range �0:1�.



6.2. Dispersion surface

The dispersion surface contains 96 sheets for the 24-beam

case, i.e. 4 � 24 = 96, which result from the intersection of 24

spheres centered at the 24 reciprocal-lattice points, with the

radii n=�, where n is the index of refraction. The crystal-

surface normal n intersects each sphere twice. Since there are

two polarizations, � and 	, the number of dispersion sheets is

then doubled, that is 4N = 2 � 2N. Taking the two-beam

symmetric Bragg diffraction as an example to illustrate the

origin of 4N dispersion sheets, in Fig. 8 the normal n intersects

the dispersion surface (solid curves that are rather close to

spheres O and G of the radii n=�) at the tie points z1, z2, . . .
and z8. Their positions are determined from the real parts of

the eigenvalues of matrix Q for the (1240) two-beam

diffraction. According to Ewald & Héno (1968), only the

diffracted waves with wavevector origins z3, z4, z5 and z6,

which are close to the Laue point (point of intersection of

spheres O and G of the radii n=�), dominate in diffraction.

The spheres O and G of the radii 1=� that represent the loci of

the origins of the wavevectors of diffracted waves propagating

in vacuum (outside the crystal) are shown in the xz plane of

Fig. 8 as dashed circles. The relative difference in the lengths

of wavevectors between the diffracted waves propagating

outside and inside the crystal is only about 1� n ¼

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �0

p
� j�0j=2 ~ 10�5–10�6. By translating the normal

n along the crystal surface, the whole dispersion surface can be

mapped out. That is, solving the eigenvalues of matrix Q for

varying (Xc, Yc). If we cut the dispersion surface by the xy

plane in the vicinity of the middle point between the two

reciprocal-lattice points O and G, then the dispersion curves

look like the calculated curves shown in Fig. 9(b), which are

symmetric about ��X = 0�. The regions for ��X = 0.06–0.08�

and ��X = �0.06–�0.08� are the ranges of total reflection.

These features are characteristic of a two-beam back diffrac-

tion (Authier, 2001).

If 24 beams are excited inside the crystal, there are 24

spheres intersecting with each other in the reciprocal space. It

is too complicated to draw all of the dispersion sheets. Here,

we consider only the dominant modes (formally enumerated

as 47–50) for reflections (000) and (1240), and show their

dispersion sheets on appropriate sections of the dispersion

surface. However, the dispersion sheet of a given mode usually

crosses that of other modes when Bragg-type reflection is

involved. This cross-over makes the identification of modes

difficult. To overcome this difficulty, we first enumerate the

eigenvalues in an order according to the values of their

imaginary parts, and then consider the values of their corre-

sponding real parts. Usually the signs of the imaginary parts of

eigenvalues for the same mode at adjacent angular settings are

the same. The variation on the value of the imaginary part of

the eigenvalue for the same mode at the next closest angular
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Figure 9
Calculated sections of (a) the dispersion surface of the 24-beam
diffraction for modes 47–50 at ��Y = 0 and (b) the dispersion surface
of the two-beam diffraction (000)(12 4 0) for modes 3–6 at �Y = 0.

Figure 8
Schematic section of the dispersion surface of two-beam (12 40)
diffraction in reflection geometry (La: Laue point. Lo: Lorentz point).



setting should be very small. Once the mode is identified

according to its imaginary part of the eigenvalue, the corre-

sponding real part, i.e. the coordinates of the tie point, is

determined. If the locus of the real part of the tie point shows

singularity at an angular setting, then we need to re-examine

both the real and imaginary parts of the eigenvalues in the

vicinity of that angular setting so that a reasonably continuous

curve is obtained. Based on these criteria, the section of

dispersion surface and linear absorption coefficient are

sketched as shown in Figs. 9(a) and 10, respectively.

As can be seen in Fig. 9(a), modes 47 and 48 are respectively

associated with the � and 	 polarized (000) reflection, while

modes 49 and 50 are respectively associated with the � and 	
polarized (1240) reflection. The angular regions for ��X =

0.06–0.08� are the range of total reflection. Originally, there

were 701 data points calculated within the angular region

�0:1�, but seven undetermined points are neglected at ��X =

0.0. This leads to the sharp curves at ��X = 0.0.

For the two-beam case, modes 3 and 4, shown in Fig. 9(b),

are O-like, i.e. O = (000), while modes 5 and 6 are G-like with

G = (1240). The dispersion curves of modes 3 and 4 are

overlapping, and so are modes 5 and 6. In contrast, the

dispersion sheets in the 24-beam diffraction are distorted near

the exact 24-beam diffraction position (��X = 0) due to

multiple-beam interaction.

6.3. Linear absorption coefficients

The linear absorption coefficients are equal to 2	 ImðzjÞ,

where zj are the eigenvalues of matrix Q. Fig. 10 shows the

calculated linear absorption coefficients of the 24-beam case

for modes 47–50 at ��Y ¼ 0. There are four dominant modes,

labeled as 47–50, among which only the two with positive

absorption, modes 47 and 48, can survive inside the crystal

plate. The reason is the following: a phase factor

 j2 ¼ expð2	izmjtÞ appears in the boundary conditions (8)–

(13) at the exit surface, where zmj ¼ Zm � zj. The eigenvalues

zj are complex, which can be explicitly expressed as the sum of

the real and imaginary parts. Hence,  j2 can be expressed as

exp½2	 ImðzjÞt� expf2	i½ðZm � ReðzjÞ�tg. Looking at this

expression, only modes 47 and 48 with ImðzjÞ< 0 are allowed

for the sake of conservation of energy. The absorption curves

of modes 47 and 48 coincide with each other for most of the

angular settings except for the region near the exact 24-beam

diffraction position. This implies that some energy is trans-

ferred to multiple diffraction channels, leading to a decrease in

the linear absorption coefficient near the exact 24-beam

position. For modes 49 and 50, their amplitudes at the exit

surface are greater than those at the entrance surface due to

ImðzjÞ> 0. These modes are associated with the diffraction

from the back surface of the crystal. For a sufficiently thick

crystal, these modes can be neglected. The fact that the linear

absorption coefficients of modes 47 and 48 have significant

values in the angular regions ��X = �0:06��0:08� (the

ranges of total reflection) indicates that standing waves are

formed inside the crystal and the incident energy is efficiently

absorbed by the crystal. Originally, there were 701 data points

calculated within the angular region, but 7 undetermined

points are neglected at ��X = 0.0.

6.4. Excitation of mode

The excitation of mode is defined as

Exð jÞ ¼
jSð jÞ ~nnj

jSO ~nnj
¼

P
m 
mð jÞ½jEmð jÞj

2�


OjEOj
2

;

where ~nn is the unit vector of the crystal normal, 
mð jÞ is the

direction cosine of the mth diffracted wave of the jth mode

with respect to the inward surface normal ~nn. 
O is the direction

cosine of the incident beam, Sð jÞ is the Poynting vector of the

jth mode and SO is the Poynting vector of the incident beam.

Since the direction of energy propagation is nearly normal to

the dispersion surface, the excitation of mode indicates the
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Figure 10
Calculated linear absorption coefficients of the 24-beam diffraction for
modes 47–50 at ��Y = 0.

Figure 11
Excitations of mode of the 24-beam diffraction for mode 47 and 49 at
�Y = 0.



energy flow of the traveling electromagnetic wave. If it is a

standing wave, the Poynting vector is zero.

Fig. 11 shows the excitations of mode of the 24-beam case

for modes 47 and 49 at ��Y = 0. The drop of the excitation

angular regions ��X =�0:06��0:08� is again due to the total

reflection because most of the incident energy is reflected,

while near the exact 24-beam region the drop is due to the

multiple diffraction which takes away the energy. The negative

excitation is associated with the (1240) back-reflected wave,

where the direction cosine is negative. The undulations of the

excitation outside the central (total reflection) region are due

to the crystal thickness effects, the Pendellosung (Authier,

2001).

6.5. Phase of the transmitted O wave

Fig. 12 depicts the phase of the transmitted (000) wave

versus ��X , the angular deviation from the exact 24-beam

diffraction position for mode 47. Far from the total reflection

region (��X = 0.06–0.08�), the transmitted O wave is in phase

with that of the incident wave. The phase in the total reflection

range, not including the 24-beam position, varies first from 0 to

�175� and then stays at �175�. In the vicinity of the 24-beam

position (about 0.0023�), the phase is drastically changed from

�175 to 0 and then 0 to �175�. This phase change is mainly

due to the exact phase matching of the transmitted wave with

the incident wave at the exact 24-beam diffraction position.

For a non-absorbing crystal, the variation in phase can be as

large as 180�.

7. Conclusions

We have carried out dynamical calculations for the back

diffraction of (1240) in a monolithic two-plate silicon cavity at

a photon energy of 14.4388 keV, at which the 24-beam

diffraction takes place. The section of the dispersion surface,

linear absorption coefficients, wavefield intensities and exci-

tation of mode are calculated. The calculated intensity distri-

bution of the transmitted beam is in good agreement with the

observed one. The developed Fortran program for solving the

fundamental equation of wavefield based on the dynamical

theory of X-ray diffraction is also briefly outlined.

From the viewpoint of X-ray optics, the effect of multiple

Bragg diffraction on an X-ray Fabry–Perot resonator seems to

reduce the reflectivity for the back-diffraction channel and the

finesse of the resonator decreases because part of the incident

energy is taken away by multiple diffractions. However, the

involvement of high-energy photons in the experiments makes

it easier to have suitable high-energy resolution mono-

chromators available for cavity experiments. If lower-energy

photons are used, then it would be difficult to reach the

required energy resolution, i.e. �E=E � 10�8 for mono-

chromators. Consequently, interference due to cavity reso-

nance would be very hard to detect because of the poor

longitudinal coherence (Chang et al., 2006). Moreover, under

the cavity resonance condition, X-ray standing waves of a

period of �=2 are expected to be formed in between the two

crystal plates. The dynamical calculation indeed shows this

standing-wave feature (not shown here). The details will be

reported elsewhere. The current 24-beam dynamical calcula-

tions offer us more information about the X-ray diffraction

processes in this type of X-ray resonator, although the fine

structure and asymmetry of profiles of resonance fringes at the

intersection with the radial diffraction lines were not observed

in the experiments due to limited resolution resulting from

crystal imperfection, temperature, surface roughness and

lattice distortion.

APPENDIX A
Procedure for the programming for dynamical
calculation

The procedures for developing an algorithm for multibeam

diffraction involving a back reflection in two crystal plates are

briefly outlined below.

A1. A single-crystal plate

1. Set up a Cartesian coordinate frame for the diffraction

geometry at the entrance surface of the crystal plate.

2. Input the lattice constants of the crystal, the wavelength

of the incident beam, the back reflection (the so-called

primary reflection) and all the reciprocal-lattice points

involved in a multiple diffraction, and calculate the coordi-

nates (Xm, Ym, Zm) of the reciprocal-lattice points when situ-

ated on the surface of the Ewald sphere.

3. Input all atoms’ fractional positions within a unit cell and

their atomic scattering factors, calculate the electric suscep-

tibility �hm�hn
of reflections hm � hn and construct the G and

G�1 matrices. G�1 can be obtained by calling the subroutine

DLINCG (N, G, N, IG, N) of the IMSL library. G�1, the

inverse of G, will be stored in the IG matrix after calling the

subroutine. N is the rank of the matrix G.
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Figure 12
Phase of the transmitted (000) wave versus ��X of the 24-beam
diffraction for mode 47 at ��Y = 0.



4. Choose the origin ðXC;YCÞ for the wavevectors Khm
and

calculate the matrix elements of matrices A, B and C.

5. Put A, B, C, G and G�1, obtained from steps 3–4, into the

matrix Q.

6. Call the subroutine DEVCCG (4N, Q, 4N, EVAL, EVEC,

4N) of the IMSL library to calculate the eigenvectors and

eigenvalues of matrix Q. The 4N solved eigenvalues will be

stored in the EVAL column matrix. Eigenvectors will be

stored in the EVEC matrix. The EVEC matrix consists of 4N

column matrices. Each column matrix is a matrix E4 [see

equation (5)].

7. Extract the electric fields Ex
mðjÞ, Ey

mðjÞ and Ez
mðjÞ, respec-

tively, from the matrix EVEC. Note that Ez
m ¼

�G�1ðAEv
m þ BEw

mÞ, m = 0, 1, . . . , N � 1, j = 1, . . . , 4N.

8. Calculate the z components of the wavevectors for the

diffracted waves outside and inside the crystal, i.e.

Kz
m ¼ �½k

2 � ðx2
m þ y2

mÞ�
1=2 and zmj ¼ Zm � zj, respectively.

9. Construct a linear system A0X ¼ B0 according to equa-

tions (14)–(15), and calculate the matrix elements for A0

and B0.

10. Call the subroutine DLSLCG (4N, A0, 4N, B0, 1, X) of

the IMSL library to solve the linear system A0X ¼ B0. The

output cj are stored in the column matrix X.

11. Substitute the constant cj into equations (8)–(10) and

calculate the electric field of the diffracted waves outside the

crystal.

12. Choose another origin ðXC;YCÞ and repeat steps 4–12 to

calculate the reflectivity and construct the two-dimensional

intensity distribution map. Here, two ‘do loops’ are required to

vary XC and YC, respectively.

A2. A two-plate crystal cavity

1. In general, the angular deviation � is given by (Shvyd’ko

et al., 1998, 2004)

� ¼ 4ðEB=EÞ½ðEB=EÞ � sin ��:

The program adopts this expression to calculate the reflec-

tivity and transmissivity.

2. The reflection and transmission amplitudes of the indi-

vidual crystal plate are derived at step 11 of xA1. Putting them

into equations (17)–(18), one obtains the total reflection and

transmission amplitudes of an X-ray Fabry–Perot cavity. Note

that in xA1, step 11, if the amplitude of the electric field of the

incident beam is assumed to be unity, the amplitude of the

electric field of the diffracted beam outside the crystal is equal

to the reflection amplitude.

Note:

1. Consider the equations involving the exponential func-

tion  j2 ¼ expð2	izmjtÞ. If the exponent 2	 ImðzmjÞt is greater

than 709.8, then it leads to overflow on the exponential

function because the maximum floating-point number stored

in a computer is about 1.65 � 10308. Refer to Stetsko & Chang

(1997) to solve this problem.

2. Every time the subroutine is called to solve the eigen-

value equation, the order of eigenvalues and the associated

eigenvectors are random. Only by rearranging the eigenvalues

and eigenvectors by hand using graphical software will the

section of the dispersion surface, the absorption coefficient

and mode excitation with respect to modes of propagation be

correctly assigned. This task is usually very time consuming.

3. Compaq Visual Fortran 6.6b (2002) contains the IMSL

library.
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